LibSvm.
Parameters : |
|
---|
Constructs the model.
Parameters : |
|
---|
Does classification or regression on test vector(s) t.
Parameters : |
|
---|---|
Returns : |
|
Does classification or regression on a test vector(s) t given a model with probability information.
For a classification model with probability information, this method computes ‘number of classes’ probability estimates. The class with the highest probability is returned. For regression / one-class SVM, the returned value is the same as that of pred().
Parameters : |
|
---|---|
Returns : |
|
For a classification model, this method outputs the name of labels. For regression and one-class models, this method returns None.
Get the number of classes. = 2 in regression and in one class SVM
Get the total number of support vectors.
Return a dictionary containing the number of support vectors for each class (for classification).
Loads model from file. Returns a LibSvm object with the learn() method disabled.
Saves model to a file.
Example on spiral dataset:
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> import mlpy
>>> f = np.loadtxt("spiral.data")
>>> x, y = f[:, :2], f[:, 2]
>>> svm = mlpy.LibSvm(svm_type='c_svc', kernel_type='rbf', gamma=100)
>>> svm.learn(x, y)
>>> xmin, xmax = x[:,0].min()-0.1, x[:,0].max()+0.1
>>> ymin, ymax = x[:,1].min()-0.1, x[:,1].max()+0.1
>>> xx, yy = np.meshgrid(np.arange(xmin, xmax, 0.01), np.arange(ymin, ymax, 0.01))
>>> xnew = np.c_[xx.ravel(), yy.ravel()]
>>> ynew = svm.pred(xnew).reshape(xx.shape)
>>> fig = plt.figure(1)
>>> plt.set_cmap(plt.cm.Paired)
>>> plt.pcolormesh(xx, yy, ynew)
>>> plt.scatter(x[:,0], x[:,1], c=y)
>>> plt.show()
[LIBSVM] | Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a library for support vector machines. 2001. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm |
[Cristianini] | N Cristianini and J Shawe-Taylor. An introduction to support vector machines. Cambridge University Press. |
[Vapnik95] | V Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag, 1995. |
Kernel Adatron algorithm without-bias-term (binary classifier).
The algoritm handles a version of the 1-norm soft margin support vector machine. If C is very high the algoritm handles a version of the hard margin SVM.
Use positive definite kernels (such as Gaussian and Polynomial kernels)
Parameters : |
|
---|
Learn.
Compute the predicted class.
Parameters : |
|
---|---|
Returns : |
|
Return the margin.
Return the number of steps performed.
Return alpha
Example:
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> import mlpy
>>> np.random.seed(0)
>>> mean1, cov1, n1 = [1, 4.5], [[1,1],[1,2]], 20 # 20 samples of class 1
>>> x1 = np.random.multivariate_normal(mean1, cov1, n1)
>>> y1 = np.ones(n1, dtype=np.int)
>>> mean2, cov2, n2 = [2.5, 2.5], [[1,1],[1,2]], 30 # 30 samples of class 2
>>> x2 = np.random.multivariate_normal(mean2, cov2, n2)
>>> y2 = 2 * np.ones(n2, dtype=np.int)
>>> x = np.concatenate((x1, x2), axis=0) # concatenate the samples
>>> y = np.concatenate((y1, y2))
>>> K = mlpy.kernel_gaussian(x, x, sigma=2) # kernel matrix
>>> xmin, xmax = x[:,0].min()-1, x[:,0].max()+1
>>> ymin, ymax = x[:,1].min()-1, x[:,1].max()+1
>>> xx, yy = np.meshgrid(np.arange(xmin, xmax, 0.02), np.arange(ymin, ymax, 0.02))
>>> xt = np.c_[xx.ravel(), yy.ravel()] # test points
>>> Kt = mlpy.kernel_gaussian(xt, x, sigma=2) # test kernel matrix
>>> fig = plt.figure(1)
>>> cmap = plt.set_cmap(plt.cm.Paired)
>>> for i, c in enumerate([1, 10, 100, 1000]):
... ka = mlpy.KernelAdatron(C=c)
... ax = plt.subplot(2, 2, i+1)
... ka.learn(K, y)
... ytest = ka.pred(Kt).reshape(xx.shape)
... title = ax.set_title('C: %s; margin: %.3f; steps: %s;' % (c, ka.margin(), ka.steps()))
... plot1 = plt.pcolormesh(xx, yy, ytest)
... plot2 = plt.scatter(x[:,0], x[:,1], c=y)
>>> plt.show()
[Friess] | Friess, Cristianini, Campbell. The Kernel-Adatron Algorithm: a Fast and Simple Learning Procedure for Support Vector Machines. |
[Kecman03] | Kecman, Vogt, Huang. On the Equality of Kernel AdaTron and Sequential Minimal Optimization in Classification and Regression Tasks and Alike Algorithms for Kernel Machines. ESANN‘2003 proceedings - European Symposium on Artificial Neural Networks, ISBN 2-930307-03-X, pp. 215-222. |